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ABSTRACT

A method for solving the inverse problem for a class of multidimensional

first order systems is given. The analysis yields equations which the scatter-

ing data must satisfy; these equations are natural candidates for characterizing

)
4.
N admissible scattering data. The results are used to solve the multidimensional
)
N-wave resonant interaction equations.
-‘
rl
3 1. Introduction
2 The inverse scattering problems for the hyperbolic and elliptic generaliza-
A tions in the plane of the m x m AKNS system have been successfully studied in [1]
. and applied to the linearization of several physically significant nonlinear
i evolution equations (N-wave interaction, Davey-Stewartson, etc.) in two spatial
. and one temporal dimensions.
é We indicate here how the method used in our investigation of the n-dimensional
} Schridinger equation [2] can be applied to the study of the inverse problem for
- the operator in R™*:
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! L $==—+0 I J, =— - Q(x,,x) . (1)
. o " 9xy e=1 ¥ Xy 0
{‘ Here Jz are constant real diagonal m x m matrices (we denote the diagonal
‘E entries of Jz by Jl,...,dg and assume J; # Ji # 0 whenever i # j); the matrix-
S ..
~ valued off-diagonal potential Q = Q') may depend on x, as well as x = (x],...,xn)

and g = og * ioI is a complex parameter.

?
=2
% The operator (1) is associated with the nonlinear system:
o
TH. §912.= 1, QQii +5(a J . Bi) §Qii + l-z(a -a )Qizsz (2)
v ot o iJ 9x iJo e L ax2 oy i R
BJ - Bi ;
§f (with a5 = —%—-—4% » 1gtgn, forsomereal B, 1c2gn, Tgigm. (3
v -
- J -
oy

w Even though no traditional scattering operator exists in the case o # 0, the
~
g so-called 3 method (see [ 2] and references given there) gives a satisfactory
h Y

definition of scattering data for Lo’ along with a systematic inversion pro-

t;. cedure, which we use to solve (2).

'Eg A solution of the inverse scattering problem for the hyperbolic case
t:ﬁ o = 0 is then obtained by a limiting argument; thus we can avoid a separate
:i study of a Riemann-Hilbert boundary value problem (which in higher dimensions
::S | may also involve some geometric complications). The main advantage of this
ifl approach is that it yields (from the compatibility conditions associated with

3 in several variables) equations which must be satisfied by the scattering data.

.8,
FRE P Db B R

In addition to their importance for the problem of characterizing admissible

E’:rl'-'.o\

scattering data, these equations have several consequences: i) they provide a

formula for reconstructing the potential from the scattering transform purely

2
Eﬂi by quadratures (in the generic case when no three of the vectors J = (J},J;,...,J;),
s

5:\ 1 <1 <m, are colinear); ii) they show how one can recover the scattering

?ﬁ: transform from (at least small) data given on certain (n+l1)-dimensional surfaces

%; (n+1 being the number of variables in Q); ifi) they may indicate what other

AT

5.
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(possibly non-local) evolution equations could be solvable with the IST
developed here; iv) they constitute in themselves a new class of multidimensional

. nonlinear systems of integro-differential equations which are linearizable.

2. The Case 9y £ 0.

We will denote by k = (k],...,kn) = kp * ikI a point in ¢" and will often
write f(k) instead of f(kR’kI) for an arbitrary function of kR and kI'

As a first step in the 3 procedure we construct a family of solutions of
L V= 0 of the form y = u(xo,x k)exp[1zz-] k (x oxOJ )] with p bounded; u will

then satisfy the equation

3 TN - -
: e * 91 % 3k o+ 10Tgm Kyldpnd = Qu. (4)
E The generalized eigenfunctions My = (u;j) we will work with, are obtained by

solving the integral equation u =1 + Eo(Quo), i.e.

i u:,j =65t ”nﬂ Gf,j(xo-yo,x-y.k)(Q(yo,y)uc(yo.y.k))ijdyody, (5)
3 where the Green's function is given by

. G k y J e'i (XOEO + x°£) d 6
(xo.x ) = (—2;)_1' IR"H Eoﬁ,zl l[JzEz""z(J _JJ)] dgqdt. (6)
. For brevity we will assume here that Q is such that this integral equation has

a bounded solution My for all k € t".

% Go can be computed explicitly by contour integration:
. i  1j i
] . sign(o.Jd,) ia Y(x~,%x,k) n J
613 (xgoxsk) = Ll ¢ 00 I 8(x, - = x,) (7)
Zni(x]-cd]xo) 2=2 Jy
[ . . n al . JJ X -
_‘ with atd(xgoxok) = 1 2L (|o|2xOI - % (ok,) ). (8)
: 2=1 Jz
The next step is to express oM in terms of u. We start by writing
A .
\‘\ l‘! A%, \l' VN AN 05, 'o.l'l.O‘\.O'o .l - N Y '., ‘; l'. . .. “. .g‘s‘\ & \ .‘ L |. ,h. .\ 4'.‘ . ” .'c ,'l e ‘l ) ..14 .l'. l'-" o
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36 3G s .
~— and hence —— (Qu) as a superposition of exponentials:
ok ok
P P . . .
36 . 5(J1 - JJ) n . 1613(x sXsKsA) .
(=2 (N = —2—LP— | o(z gn)e O 0 T (k,2)dr. (9)
oky o 2ijof|(2n)" gn 2= o
with Bij(x XsksA) = ij(x X,k) + g (x,- Ji )2 and (10)
(B ' % Xo*» =1 X 9R%%0’ ¢
R
.. -18 (y ,y,k,X) R
ij - o Y0 ij
k= [ e (Qygy g lygry-k) Jaygay . ()

R n+1

The calculation of 3u is then based on the following crucial symmetry

property of our Green's function:

ij
=B Y (XqsXaKsA) . s .
e 00 873 (xg»x,k) = G;i(xo,x,k;J(k,A)) whenever £J]1,=0; (12)
here Qlj(k,k) is the point in ¢" whose zth component 1is
A Y
(3(k,00), = 22 (o) + K, + A, (13)
opdg

Once (12) has been established it can be shown (assuming that (5) admits

no homogeneous solutions) that

du 5(Ji-Jj) . . isij(x »XsKsA)
=% (xgoxok) = 2 —EB— [ (s )TH (ke O 0 x
L i,§ 2ilop|(2n) n o
x g (xgxaR o7 (k1) )E s (14)

. . rs _
(we have denoted by Eij the m x m matrix with entries Eij 'dirdjs)' If we now

fix all kl, 2 # p, and apply the (1-dimensional) inhomogeneous Cauchy integral

formula

.....
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~ of

e 3

M —=<Z')

- - 1 f Z' 1 oz -

£ ) e gy | Hleepgg ” 7z 42t r a2t (19)
0 |z* |=R |z" | <R

} to the kp variable, we can convert (14)p to an integral equation: noting that

u(xo,x,k) ~ I when |kp|+ o (and denoting k' (kl""’kﬁ""’kn)) we have

‘ (- .. G(ZJiA ) s iBij(x 2Xsk',A)

: olrgok) = 1= —L0r z(alod) [ S i tene 0 :
: |°I|(2“) 1,] PP

ij ] [] ]
\ x uo(xo,x,ﬁ (k ,A))EijdxdkdekIp . (]6)p

}2 (More generally, one can use (15) with f(z) = uo(xo,x,k+zv), z e, with k fixed

and with an arbitrary v ¢ ¢" which is not perpendicular to any of the vectors

3139, i # j). The matrix-valued function T_(k,A) defined in (11) is our

§ scattering data and (16) is the inverse scattering recipe for reconstructing
: u from T. Once u is found, the potential is easily recovered:
A W) =32 10, ([ 2o (o xakydk, dk, ] (17)
¢ 0’ T “p° c 0" R T 4°
- ok P p
b p
" On the other hand, given an arbitrary T(k,A), to apply the above inversion
x procedure we would first need to know that the equations (I4)p, p=1,2,...,0,
L~ 2. 2
w are compatible; requiring that ? L = ? L yields the following characteriza-
- ok 3k 3k _ak
- rop p-r
{ tion equations for T:
. ij ij ij ij
- . 1) . . aT .= . s . . ol aT
~ ij + (41 J\ 0 i Jdv o ig (10 4dygqidyl " @ 1 gy 2
“ LY[T ] 4 (0 -09)=—- (J~0)=2—+ == (J_ -0 NI -9 ) (- =5 - & =) =
. prt'c p p akr rr 3k 2°I p p/'Vrr J; axr ] axp
‘o P Y
[
83 s . .- : 0 . s ¥ 9 N . 1 0 21
N - nid . ig LR EYPIS S RIS R PP I LTS R .
: 7] ¢ 1o x 1 o 0797 )- (07 - 05351, T )
) logf(2m)™ i
R _ y
it 01t J ij
.? x TR k'), A - T A, (18)
%
E: For compatibility, (18)1j need only hold whenever zdlkz = 0, however one may also

[\
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-Eié verify that T, when given by (11) satisfies (18) everywhere.

{i“; It turns out to be very useful to recast (18) in integral form. It is

v F

N enough to keep only the equations (18)p]. We then look for a parametrization
'§$ of the hyperplane {(k,X) € ¢" x R": ZJEAQ = 0} by new variables (x,wo,w) e ¢" Y«
N i

g xR x R" so that, in the new coordinates L;% = —g—a 2<p<nand

o xXp

;%; B;J(xo,x,k,x) = XgWg * Xew; these requirements determine (up to a translation
}iﬁﬁ of x) the following (invertible) map:
‘\ . . . . -I - :

- = (39 - g} . = N LI 1 (9 no 1.y,
% kg = (93 = dydxgs 2223 Ky = Ip,(0, R (—Zlol WotZe=19e )5
- 171

» . e s s o .

53 (33-31)(al-ay (91-33)(33-a9) J;

. W it E i L AP L Kkt PSS A
2 5.1 Xolp T W2 22 65 My 5.9 AT T T e
- I"2 I 1
\'..

o (19)
. To use (15) as before, we need the limit of T'9 for ]xpl large (and x,, 2 # p,

};r_ Wy W fixed); this turns out to depend on whether for some r # i,j we have

l."...

ﬂ"‘ - . [3 * . 3

";j-;'.‘ r_ 4 T_Jy = ¢aVloqd r_4J

i (91930 (35-95) = (33-99)(3,-9p) - (20)
i For brevity we consider only two cases (the only ones arising in the study of

4 '

-;; (2) - see the appendix): case I-relation (20) does not hold for any distinct i,j,r

s
,\V and any p # 1; and case II-relation (20) holds for all i,j,r,p (in other words, the
(

:jg vectors J‘,...,Jm all lie on the same line in R"). In the generic case I we
o have
;E? Tim T;J(x.wo,w) = 61j(w0,w) (21)
- Ixp [+
'."".:' 1 1
}:& and (18);% becomes
-"\ -
l".d' ]J '
.. . N SET J(x' oWqsW) .
ol ij ij 1 ([ p1tle 0 Vgt = Aid
o 17T J(xomgsw) # T3 (XowgaW) = o %' dxp dx; = @ “(wgow),  (22);
e p~ “p P P
T where
)
'-'::
e PR G I A Y N T SN M S N T T AT T AT T D M A AN AN




{T{R({." q -,’::_‘r:?: e '.'\: - ’ PO P9 AN A,

i j 1 [)
Q J(xo,x) dxydx and x' = (XZ""’Xp'°"’xn)'

ﬁij(wo,w) =Jje-i(x0w0 * e

. If (20) holds for some r # j then (21) need not be true (see (7), (8), (11)).

- 1J'

. In case Il we have é;——-z 0 for all p, 2 < p < n; this, together with Liouville's
. 3%

: P

theorem, allows us to replace (22)I by
ij - 7id
TO (x,wo,w) T0 (wo,w). (22)II

In case I we conjecture (as in [ 2]) that the main condition needed to

characterize the scattering data is that I;j[Tc](x,wo,w) be independent of

x and p and have suitable decay properties in (wo,w); furthermore, given a T0
i which passes this admissibility test we can (re)construct a local potential Q
simply as the inverse Fourier transform of I[T].
) From (22)II we see that Tij is completely determined by its values on the
(n+1)-dimensional surface x = Xgs the analogue of this in case I is the follow-
ing: given T;j(xo,wo,w) = Gij(wo,w), 1 <1i,j ¢ mwe have (from (22)1)
E{)Ergjfx',wo,w) ] N;‘]j[To]Exé,wo,w)]dxé o
; p %p Xop ~ %p p
. (23)

! T;j(x,wo,w) 1J(wo,w) + JJ[

which (at least for small G) could be solved to find T everywhere.

Ll af M AY N L N

3. The case o = -1.

If we formally substitute g = -1 in (6) we find that, away from the

S anaVe",

hyperplanes z = (ke¢" g=](J;-Ji)kI = 0} the eigenfunction u_](xo,x,k)
L
is we]l-defined and holomorphic. Thus it appears that the inverse problem for

the hyperbolic system L_] could be regarded as a Riemann-Hilbert problem with

viamt a3 2 s

data on the hyperplanes zij’ 1¢1<jgm We prefer to obtain an inversion

procedure from our results for o1 # 0. There seems to be little advantage in

K

i
-
-
-
-
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DA studying the limit of ”o(XO’x’k) as o -~ -1 (it leads us back to an analysis

'.-.:.
' | of singularities on the hyperplanes zij); we work instead with the limit of

J hd k3 I3 -
:ﬂ‘\i “o(XO’x’kR’OIkI)’ with kI now playing the role of a parameter. From (6) we find
AN .

“Ee 1im G (XnsXsKpsOrk,) = G, (X~,%,Kpsky)
::_..:: sa=1#i0 © 0 R*™IMI L0 R*>™I
v J

o n o, ) i d Ny ) i
-\.'. _ -3 LL e(ZQI:][J,Q,EQ,-..(kRLkIQ)(JQ Jl)]) + 9( 22=][J252+(kRg klg)(dl JR)])
-3 n+l O T_ 03101 n .1 T3y
:’:::E (2nm) | g 22=1[J2€2+kR2(J2 Jp)1+i0 F’O'zﬂ.ﬂ[‘]zgfkRz(Jz Jy)1-10
. i(xgEq + X°E)

N xe 00 e 40, (24)
-

:::: with 6(-) the Heaviside function; correspondingly, 1lim y (xo,x,kR,oIkI) =
(D o+-1+i0 °
o , , "

E‘ = u (xgsxskpsk;) where u solves the integral equation u =1 + GL(QuL). From
- (24) we see that yu, (Xx,sX,Kp,k;) is a solution of

L X0 X *R>¥]
{

AN 9y _ N QY _ 4N -

o 39X Zo=1 Jz Xy RS le[Jz,u] Q“ (25)
o

"" for every value of the parameter kI in R". Our scattering data is now

. i)

ol - =18, Y (XnsXsKpsKysh) .

ij _ L ‘0 R*™I 1]

:?:::: TL (kR’kI’x) = Un+] e (Q(XO.X)HL(XO,X,kR,kI)) dXOdX
i (26)
e
S . . . X ,
. ij . N i_J .4 . i ,
:::y. with g/ (xo,x,kR,kI,A) 22=1[(J£ Jl)(xokll J1(le kIE))+(x2+J2x0)>\k]. Taking
3 :
;" limits in (14) we find the reconstruction equations for yu:
P2 o(k, -kt ) 8(ky -k, )

o (xgoXokosky) = I + —1 wl-ad|([c B S B 1s(zaly,)
W H (XgsXokpokyp) = 1+ ===y T g kKo -kl +i0 T kK, k'T =10 P
bee )" ,j R "*R R %R
P P P P
o SR -

‘-I-q 3 IB (X ,X,k ’k ’A) : 4

o ij L "0 I Ve ' 1
:.‘:f' x TV (kgskpar)e u (xgax,k, (kR,kl,A))EUdAderdk ) (27)
1 I.
o

-
&
-

Eat

,'\‘c .ll X ,q'\..\! [ X1 ,n’i, ,.\,.k, J' 2 kg

-
-
IS



y Ji Jl 2 g
~iJ ) ~ij -
where now (kL (kR,kI,A))R : kR 3 kI + xl and (kL )I kI
2 Jg ') JQ ') L '3
To write the characterization equations for th we introduce new variables

(suggested by the 1imit of (19)) (XR’XI’WO’W) € R3"'1 to parametrize the
3n

hyperplane EJ;AQ =0 in R as follows:

kp = (Jj - Ji)x s 2>2; ky =10 (Ji - Jj)x M- (w,-z" D )
R, T V1T iR Ry ~ “e=2te T /%Ry J}_J\]] 07%e=1""
= (gdog] . =N (gi_yd 1
kp = (9dydxp » 2225 kg =2, ,(0p=8)x; *+ 3 % (28)
g g 1 21-01
(93-01)(ai-gdy (03-a3y (al-ad) J!
A ) n W19 dg-dy g
Ay = ] (X =X )+w s L bd 2; A =1 = [ T (x -X )- —wl
2 JL R2 Iz L 1 =2 J; Rz Iz J%

Then under the assumptions of case I in section 2, the 1imit of the equations
(22)I yields:
8(x; -x; ) olxg -x )

ij - gl 1JJ P P p_p . C o
T ’ WhW) = WhoW) + + N T WL W d d s
L (xpoxg »Wgw) = Q77 (wg.w) [XRp‘xR O Xg IR 10 INGIT 10 g ) XR I
p

(29,

with Np1[TL] given by a slight modification of (18). In case II we have
ij _ Li]
TL (XR:XI ,WO,W) = TL (WO,W). (29)II

As in section 2, we can now use (29)I to characterize admissible TL, (re)con-
struct Q, as well as recover T, from data given on xp = const., x; = const.

It should be pointed out that once the family of Green's functions GL has
been chosen, all the above results can be derived without recourse to our limit-
ing arguments (kauL can be expressed in terms of i using the appropriate

symmetry property of GL and the analytic behaviour of L for kI large - needed to

establish (27)- follows from (24); these analytic properties together with the
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u'.s"

.:;;:'- i . 62}1 32}.1 :

:§:1 compatibility requirements X, akI = 3k1 3k1 imply (29)).

\";-,.' r p p r
Le

.Ej: 4. Relation between TL and the Scattering Operator (o=-1)

;f To fix notation we sketch an elementary definition of the scattering

I operator associated with L_;. When Q =0, given f : R" + R", the solution of
ifa the Cauchy probiem L_]u(xo,x) =0, u(0,x) = f(x) is

(:j u1(x0’x) = f’(x]+x0J},,,,,xn+on;), 1 <1 g m, which we write as u(xp,x)=f(x+xyd).

- When Q is, say, smooth and of compact support, given any (reasonable)

L

'i:i f : R" > R there is a unique u solution of L_]u = 0 with u(xo,x) = f(x+x0J)
’&:ﬁ for Xg << 0; furthermore there is a unique g such that u(xo,x) = g(x+x0J) when
j:a Xg >> 0. We write g = Sf. On the Fourier transform side S can be written as
o Sere - 1 -

e (2m) RrR"
(

Ag The question we would like to address is how to recover TL (and hence Q) given
‘;;f S(£,kg). To relate T, and S(£,kg) it turns out that we need to relate u and
.:iz the eigenfunction u(xo,x,kR) corresponding to the "Volterra" Green's function
J

] . N n i

i%ﬁ' G (xo,x,kR) = e(xo)exp[-122=](x£+x0J2)kR2] 2215(X2+X0J2). (31)
oL We start with the identity

o

w5 N .

B W= o= (6-6)(Qu) + G(Qu -n)), (32)
P .- . o + v »

[‘f: write G;_J-G1J as a superposition of exp(iBlJ) and use a suitable symmetry pro-
Ej} perty of G. The main result is the following linear equation for TL given S:
-

3 ok on) = SR ko) ko) - —= £ [ s( £ 3i'n) x

- L (kpokps R (kpskpsAlskg n L, L Jdg )

T (2m)” i on 2=

Y R

o i3 AfY ] ANWRLE .

o x S0 (kg (kpskpAdkp “(kpak A )T (kpsksA)dA', (33)

-
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where Q&J(kR,kI,A) stands for the real part of Elj.

5. Applications to Nonlinear Equations

The equations (2) are the compatibility conditions (cf. [ ]) for the
Lax pair:

- Y Y oAy
Low 0 and =+ +I o Ay ; (34)

n
-1 B
2=1 "¢ }

the matrices B> 1 ¢ 2 ¢ n, are constant real diagonal and

A1J(t,xo,x) = % aijQ]J(t,xo,x) with a4 given by (3). The restrictions imposed
by (3) on the matrices Jz’ 1 < 2 <n, are discussed in the appendix. To find
the time dependence of the scattering data corresponding to (2), we set

_ . on . . . s
v = wexpli Ik (xp-oxqd -tB )] then u satisfies (4) as well as

£ O 4 N ) VAR | B o
ALE St T I By 3, *izpy k[Byoul - Au = 0. (35)

Applying the operator A to both sides of the equation (14) we find (when g #0)

ij
oT . . .
‘g _ 5N J, _pipid ij
St (t,k,n) 122=][sz2 Blk2 (k,)\)]T0 (t,k,yA). (36)

For the case o = -1 the equations (obtained as limits of (36) or by a parallel
derivation) are

iJ

aTL

_ o rrdy Lpiti ij
st (ErkgokpoA) = 120 kg “8yRe) (kgokp MITL (Eakpokp ). (37)

Thus, when o = -1, we can apply the inverse scattering procedure together
with (37) to construct the solution to the Cauchy problem for (2). Note that
TL(t,kR,kI,A) as given by (37) satisfies the characterization equations if
T (0,kg.kps2) does.

When <3 # 0 the Cauchy problem for (2) is il1l-posed; however (by analogy
to the corresponding linear problem) we can use inverse scattering to solve (2)

as follows: given Q(O,xo,x) it can be decomposed into Q+(O,x0,x) + Q_(O,xo,x)

SRS e 2 A WS
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RN

o where Q+(O,x0,x) extends to a function Q+(t,x0,x) satisfying (2) in the half-

-
;:\ space t > 0, while Q_(O,xo,x) extends to a function satisfying (2) in the

;:i half-space t < 0. Assume for simplicity that 0135 > 0 for all i # j. Given Q
;;; define Q_ by a+(0,w0.w) = e(iwo)ﬁ(o,wo,w). If T, is the scattering transform

N - : I B _ )

\;) of Q, then from the direct problem we.flnd T, (O,X,wo,w) = 0 for Wy > 0; thus
;;3 for t > 0 we can define (see (36)) TlJ(t,x,wo,w) by

Sl TlJ(t,x,wo,w) = exp[it22=](B%kz-BlElJ)]TlJ(O,X-WO,W) = (see (3), (13) and (19))
f
\
) d. . . . . s

.:__.t - ser 1 n 1 _ 1 1J

& explit(—% wy + Zp_q(a;50,-B) Wy ) IT,7(0,x,mgw). (38)
.'3; Since the expression in the exponential does not depend on x and since its real
® .
;jz part is nonpositive if t > 0, TlJ(t,x,wo,w) satisfies the characterization
fﬁ; equations (29) so inverse scattering should yield the desired potential

™
L Q+(t,x0,x); similarly we can construct Q_(t,xo,x) solution of (2) for t < 0.
\

:_-;.f
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. Appendix
o
& We need to find the restrictions imposed on the choice of matrices Jﬁ,
3
{"5 1 < 2 < n, by the existence of (aij) and Bz’ 1 < & < nsatisfying (3).
j;f ' If (3) holds then the matrix (aij) is symmetric and
Oy
- JJ J! 2
l_?. a]p - apJ = ( pJ) 35~3a- for every £ and every i,j,p distinct . (A1)
;;} (Conversely, if (A1) holds with (a..) symmetric then BQ, 1 < £ < n can be
-.‘n - B - .
H{: found so that (3) is satisfied.) MNote that if a, f a » (A1) forces ', JJ,
}\i~ JP to be cniinear. There are two cases:
-'::7:‘
0 I a, =a . for all i,j,p distinct. Then (A1) puts no restriction on J,;
[} \:\ 1 p p\] 2’
oﬁE in particular they can be chosen sc that (20) does not hold for any distinct
(N i,J,r and p # 1. The system (2) is linear in this case.
eii I1 For some 10,30,p0 distinct a; R 7 apojO . We show that in this case the
ot vectors J], .. sd™ must all be colinear. From (A1) we already know that
-). - 10 jo po . .. .
v J 7, J 7, Jd " are colinear. Forany r # 1923g2Pp One of the following must be
o
L true
o
i o
e (i) a. _#a_., (i1) a_. # a, . (iii) a_, # a. (A2)
o o "o ToPo Mo JoPo
ii& (for if not a; 0P, am.0 = rJO = pojo contradicting our assumpt1on) Ig e1tger
:E; of the possibilities (A2) J" will be on the 1line passing through J ‘0 , J 0, J 0;
L .
;,‘ this will be true for any r, 1 < r < m. (Conversely, given J],Jz,...,dm
ij colinear with JL # Ji we can construct (aij) symmetric satisfying II and (A1)).
fﬁé It follows that whenever (2) is not linear, the matrix having J],Jz,...,Jm
@
o as rows has rank at most 2; thus if n > 3 its columns (the diagonals of the matrices
o, . : . .
Wad JQ in (1)) must be linearly dependent and then the inverse scattering problem for L0
s k]
E#b can also be solved by reducing it to a lower dimensional one. On the other hand,
7 since the characterization equations are trivial (i.e. N(T) = 0) in this case,
Ky
::;2 it seems reasonable to expect that other (possibly non-local) nonlinear equations

RGN CM R LR
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‘§:4 can be found which would be compatible with (22)11.
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